Welcome

APTI 452 Principles and Practices of Air Pollution Control

1

Instructors/Facilitators

Mary Boyer 4mboyer@gmail.com

Joe Paisie jpaisie@outlook.com

2

Administrative

- Facilities
 - Rest Rooms
- · Schedule/breaks
- Cell Phones
- Lunch
- Sign-In Sheet

Administrative

To receive credit for the class you must:

- 1) Sign in every day
- 2) Take the pre test
- 3) Take the final exam

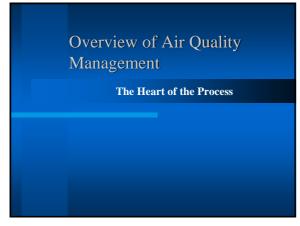
4

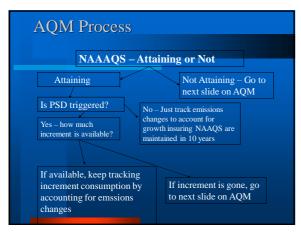
Materials

- Registration Form
- Notebooks/Agenda
- Evaluation form online

5

Ground Rules


- Ask questions
- Participate
- Provide the benefit of your experience
- Be on Time
- Feedback on Evaluations


Audience Profile 1. Agency 2. No. of Years/Months/Days 3. Work unit (permitting, enforcement) 4. No. of Inspections Yearly

7

8

11

Process of Air Pollution Management and Control 1. Timing – must be enforceable deadlines 1. NAAQS review, attainment, enforcement actions 2. State, EPA and Citizens 3. Concept of reasonable further progress until attainment 2. Failure to plan or failure to attain 1. Sanctions, FIPs, reclassifications with new SIPS 2. New attainment date 3. CAA ddoes not punish failure to attain only failure to plan 4. Voluntary reclassifications in areas that can not attain 3. Seconcary pollutants such as Ozone and PM 2.5 1. Precursors and their sources 2. Atmospheric chemistry 3. Transport at various geographic scales

Process of Air Pollution Management and Control Continued 4. Enforcement including Inspection 1. Determination of a violation of an emission limit or work practice 2. Notice of violation

- 3. Remedies including tickets, consent decrees how long is this process
- 4. Sources of evidence credible evidence, CEMs and record keeping $\,$
- 5. Mobile source program
 - 1. Estimating emissions for this sector
 - 2. Effect of FMVCP
 - 3. In-use testing of autos and trucks
 - 4. Alternative fuels, reformulated gasoline and sulfur content

13

Process of Air Pollution Management and Control Continued

- 6. Technology Front
 - 1. Catalyst poisoning
 - 2. Control equipment maintenance
 - 3. Co-control from other programs including MACT, Residual risk and acid rain
 - 4. GHGs and any other regulatory program affecting emission of criteria pollutants
- 7. Increments concept including overview of baselines and triggers, increment tracking and consumption
- Control strategy Development including concepts of reasonable available control technologies, economic feasibility and societal factors

14

Federal-Regional-State Roles

FEDERAL

- National standards, rules, and enforcement
- Consistency of policies and programs
- ► Technical guidance
- ► Reports on progress in reducing air pollution
- Ultimate authority & accountability

Federal-Regional-State Roles

- ► Conduct assessment and characterization
- ► Help develop multi-state strategies and trading programs
- planning/coordination for implementation of national programs

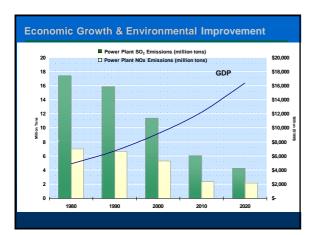
16

Federal-Regional-State Roles

- **▶** State rules
- **►** Source Permits
- ► Compliance & enforcement
- ► Implementation Plans ► Implement national rules & guidance

 Monitoring, modeling,
- emission inventories

EPA Establishes NAAQs					
	Primary Standard	Secondary Standard			
Carbon Monoxide	9 ppm/10 mg/m3 (1 hr) 35 ppm/40 mg/m3 (8 hr)	None			
Lead	0.5 ug/m3 (quarterly)	Same as primary			
Nitrogen dioxide	0.053 ppm/100 ug/m3 (annual) 100 ppm (1 hr)	Same as primary			
PM10	150 ug/m3 (24 hr)	Same as primary			
PM2.5	12 ug/m3 (annual) 35 ug/m3 (24 hr)	15 ug/m3 (annua			
Ozone	0.07 ppm (8 hr)	Same as primary			
Sulfur Dioxide	75 ppm (1 hr)	0.5 ppm (3 hr) 18			


► Multi-media approaches

► Balancing "carrot and stick" in our regulations & programs

19

Citizen Involvement

- ▶ Public Participation
 - Hearings on Rules/Permits
 - Comment Periods on Proposed Rules
 - Workshops
- ► Administrative Review
 - Agency Review Boards
- ▶ Legal Review
 - State Courts
 - Federal Courts

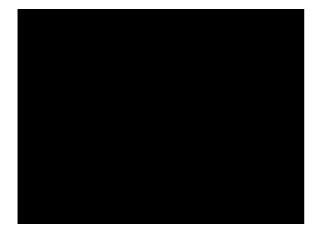
Summary

- ► Air Quality Standards/Goals and Timelines are key
- ► Technical Tools and Information are essential
- ► Air Quality Management Process is iterative and adaptable
- ► Transparency is important to maintain credibility
- ► Focus on results not just process

22

APTI Course 452 Principles and Practices of Air Pollution Control Chapter 1: Control Program History

23


Chapter Overview

- Control Program History
- Air Pollution Control Programs
- Hierarchy of Government Responsibilities
- Air Pollution Management
- Future Focus of Responsibilities

Air Pollution Control Programs

- Air Pollution Episodes
- Improvements in Science
- Changes in Society and Economy
- Environmental Activism and Public Awareness

25

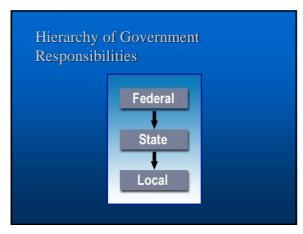
26

Air Pollution Episodes

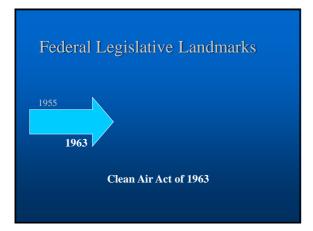
- 1930 Meuse, Belgium, 63 people died
- 1948 Donora PA, 22 people died
- 1952 London, England, 4,000 people died
- 1953 New York City, 200 people died
- 1984 Bhopal, India 3,700-16,000
- 2008 China
- India from ? to now
- 2012- now Our Western Wildfires

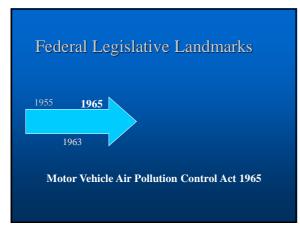
Improvements in Science

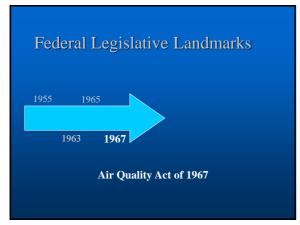
- In the 1950s, Professor A.J. Haagen-Smith showed that under ultraviolet irradiation, organic compounds and oxides of nitrogen react to produce smog
- In 1963 data indicated increased mortality with levels of high sulfur dioxide and/or smoke.
- By 1980, air pollution meteorology came of age.

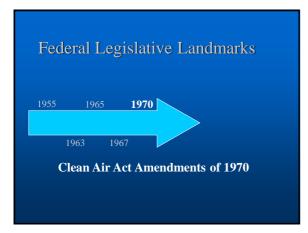

28

Changes in Society and Economy


- Longer Life Span
- Costs of a Higher Standard of Living


29





Clean Air Act Amendments of 1970

- Goal of 90% reduction in vehicle emissions in 5 years
- National Ambient Air Quality Standards (NAAQS) and required states to produce a plans to meet NAAQS.
- National Emission Standards for Hazardous Air Pollutants (NESHAPs), to identify and regulate "hazardous air pollutants."
- Empowered EPA to establish New Source Performance Standards (NSPS) for significant sources of air pollution


37

38

Clean Air Act Amendments of 1977

- "Prevention of Significant Deterioration" (PSD) and "Nonattainment" Provisions.
- New Source Review program for construction and modification of new major sources.
- Provided a much longer and realistic time frame achieve compliance with the NAAQS.
- · Strengthened auto emission standards
- Regulated chemicals that damage the stratospheric ozone layer.

1990 Clean Air Act Amendments

- The air quality in several urban regions had only marginally improved.
- Overhauled the HAPs program, strengthened nonattainment provisions, and added the operating permit, acid rain and ozone depletion programs.
- Greatly expanded federal enforcement provisions; criminal penalties expanded to include felony provisions
- EPA administrative powers significantly increased via "administrative penalty orders."

41

Federal Regulatory Landmarks

- 1993 Schedule to end CFC's
- 1994 New HAP standards for Chemical plants
- 1996 Lead out of Gasoline Rule
- 1999 Regional Haze Rule
- 1999 New Tailpipe Emissions Rule
- 2004 Off Road Vehicle
- 2005 Clean Air Interstate Rule

Federal Regulatory Landmarks

2006 NAAQS For Particulates
2009 Greenhouse Gas Rule
2011 New Boiler Regs
Mercury Regs
Cross-State Air Pollution Rule
2012 Oil and Nat. Gas Rule (Fracking)
2013 Power Plant Carbon Rule
2014 New Ozone Standards (late 14)

43

Air Pollution Management

- Strategies
- Implementation

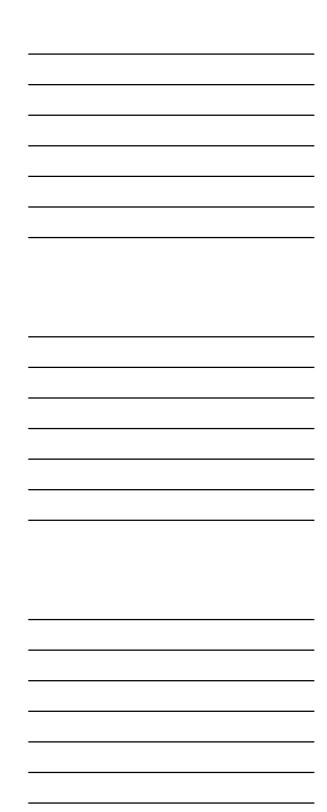
44

Strategies: A Comparison

Strategies	Cost	Simplicity	Enforceability	Flexibility	Adaptability
Strategies Air Quality Management Emission Standards Emission Taxes Cost-benefit Analysis Source: A.C. Stem, 40: Pollution	Good	Poor	Fair	Fair	Fair
Emission Standards	Terrible	Excellent	Excellent	Poor	Fair
Emission Taxes	Fair	Excellent	Excellent	Unnecessary	Good
Cost-benefit Analysis	Excellent	Terrible	Unknown	Unknown	Good

Implementation

- National Ambient Air Quality Standards (NAAQS)
- Air Monitoring
- Source Inventories
- Air Pollution Modeling
- Enforcement


Future Focus of Responsibilities

- Current Situation Control
- New Strategies Prevention
- Other Issues

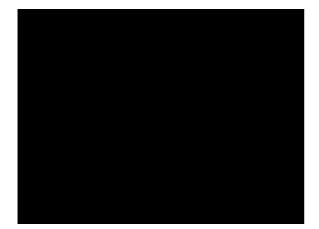
47

Chapter Summary

- Control Program History
- Why Air Pollution Control Programs?
- Hierarchy of Government Responsibilities
- Air Pollution Management
- Future Focus of Responsibilities

APTI Course 452 Principles and Practices of Air Pollution Control Chapter 2: Human Health and Environmental Effects Of Air Pollution

50


Chapter Overview

- Hazardous Effects of Air Pollutants on the Human Body Systems
- Criteria Pollutants
- Toxic Air Pollutants
- Environmental Effects of Air Pollution
- Risk Assessment

Hazardous Effects of Air Pollutants on the Human Body Systems

- Pollutant Movement Through the Body
- Upper Respiratory System
- Lower Respiratory System

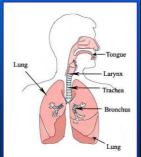
52

53

Pollutant Movement Through the Body

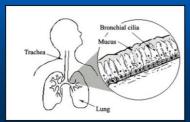
- Entry Points
 - Mouth/nose
 - Skin
 - Ingestion
- Susceptible Groups
 - elderly, infants, pregnant women, and those with chronic lung or heart disease.

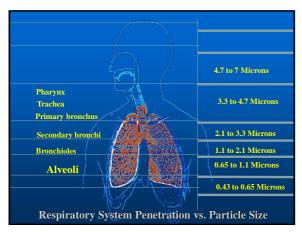
Basic Health Effects of Pollutants

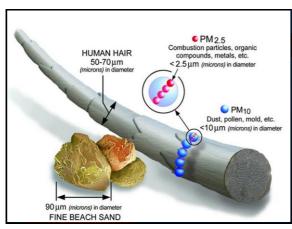

- Pollutants interfere is by altering the chemical reactions that take place within individual cells.
- Manifests as either an acute (short-term) or chronic (longterm) health effect.

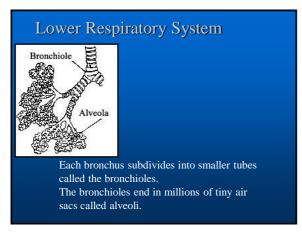
55

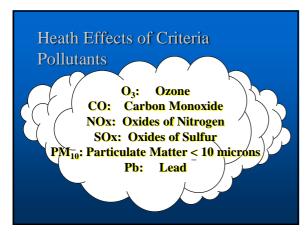
Pollutants and the Upper Respiratory System


- Entry
- Defenses
 - Cilia
 - Nasal hairs
 - Mucus membrane




56


Pollutants and the Upper Respiratory System


• Smaller particles (<10 microns) can escape defense mechanisms

Criteria Pollutants

The NAAQS have "Primary" and "Secondary" categories.

Primary is based on human health and welfare Secondary is based on property and agricultural crop dam

62

Particulate Matter (PM)

- A general term used for a mixture of solid particles and liquid droplets found in the air
- Natural, mobile and industrial sources
- Impacts the respiratory system

Lead (PB)

- Enters through ingestion and inhalation
- Bioaccumulates
- Impacts the central nervous system
- Sources are
 - Historical (leaded gasoline and paint)
 - Brakes
 - Gun ranges
 - Speedways
 - Airports

64

Sulfur Dioxide (SO₂)

- Irritation and inflammation of tissue that it directly contacts.
 - Asthma
- Sources are combustion processes

65

Carbon Monoxide (CO)

- Absorbed by the lungs and reacts with hemoglobin reduces the oxygen carrying capacity
- Can cause
 - Mental impairment
 - Aggravation of heart disease
 - Death
- Sources are motor vehicles, marine engines, heaters and stoves

Nitrogen Dioxide (NO₂)

- A reddish brown, highly reactive gas that is formed in the ambient air through the oxidation of nitric oxide (NO).
- Impacts airway responsiveness and lung function
- Sources are high-temperature combustion processes

67

New NASA Images Highlight U.S. Air Quality Improvement | NASA

http://www.ozonewatch.gsfc.nasa.gov

71

Ozone (O3) Formation

- Reactive (non-methane) hydrocarbons and NOx accumulate in the atmosphere and are exposed to the ultraviolet component of sunlight, the formation of new compounds, including ozone.
- Absorption of ultraviolet light energy by NO2 results in its dissociation into nitric oxide and an oxygen atom. The oxygen atoms react with atmospheric molecular oxygen to form ozone.

Ozone (O₃)

- Decreases in lung function and increased respiratory symptoms.
- At-risk groups include outdoor workers and athletes
- Ozone is formed by the reaction of VOCs and NOx in the presence of heat and sunlight.
- VOCs are emitted from motor vehicles, chemical plants, refineries, factories, and consumer products.
- Nitrogen oxides are emitted from motor vehicles, power plants, and other sources of combustion.

74

Pollutant [links to historica tables of NAAQS reviews]		Primary/ Secondary		Level	Form
Carbon Monoxide	Carbon Monoxide (CO)		8 hours	9 ppm	Not to be exceeded more than once per year
			1 hour	35 ppm	
Lead (Pb)			Rolling 3 month average	0.15 µg/m³ ©	Not to be exceeded
Nitrogon Diovido	Nitrogen Dioxide (NO ₂)		1 hour	100 ppb	98th percentile of 1-hour daily maximum concentrations, averaged over 3 years
red ogen blowde			1 year	53 ppb (1)	Annual Mean
Ozone (O ₁)	Ozone (O ₁)		8 hours	0.070 ppm ⁽⁴⁾	Annual fourth-highest daily maximum 8-hour concentration, averaged over 3 years
		primary	1 year	12.0 µg/m ³	annual mean, averaged over 3 years
		secondary	1 year	15.0 µg/m ³	annual mean, averaged over 3 years
Particle Pollution (PM)		primary and secondary	24 hours	35 µg/m³	98th percentile, averaged over 3 years
	PM ₁₀	primary and secondary	24 hours	150 µg/m³	Not to be exceeded more than once per year on average over 3 years
Sulfur Dioxide (SC	Sulfur Dioxide (SO ₂)		1 hour	75 ppb ⁽⁶⁾	99th percentile of 1-hour daily maximum concentrations, averaged over 3 years
			3 hours	0.5 ppm	Not to be exceeded more than once per year

Heath Effects of Criteria Pollutants CRITERIA POLLUTANT BODY SYSTEM HEALTH EFFECTS Particulate Matter (PM_{2.5} and PM₁₀) Lower respiratory system. • Asthma • Bronchitis Cancer Heavy metal poisoning Reduced lung function Anemia High blood pressure Cancer Neurological disorder Intellectual function Lead (Pb) Organs and soft tissue. CO poisoning Angina pectoris Neurological dysfunction Asphyxiation Carbon Monoxide (CO) Circulatory system.

Nitrogen Dioxide (NO2) Respiratory system. Sulfur Dioxide (SO_2) Respiratory system. NO₂ poisoning
 Asthma
 Lowered resistance to infection Asthma Heart attack
Bronchial constriction
SO2 poisoning

Ozone (Os) Respiratory system.

Lung inflammation
 Reduced lung elasticity
 Transient cough
 Chest pain
 Throat irritation
 Nausea

76

Toxic/Hazardous Air Pollutants

- Toxic or hazardous air pollutants (HAPs) are those pollutants that may cause cancer or other serious health effects or adverse environmental and ecological effects and are not covered by NAAQs.
- There are 188 HAPs.
- NESHAPS are emission standards for HAPs.

77

Toxic Air Pollutants (cont.)

• National Toxics Inventory (NTI) tries to estimate and track national emissions trends for the 188 HAPs

Environmental Effects of Air Pollution

- Environmental Issues
- Acid Rain
- Visibility
- The Greenhouse Effect
- Stratospheric Ozone Depletion

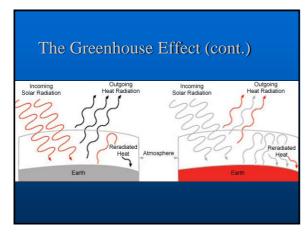
79

Environmental Issues

- Ecosystem
- Property Damage
- Quality of Life

80

Acid Rain


- Nature and Source of the Problem
- Health and Environmental Effects

The Greenhouse Effect

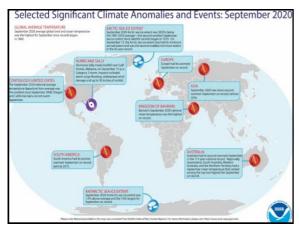
- Nature and Source of the Problem
- Health and Environmental Effects
- International Developments

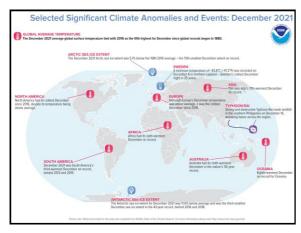
83

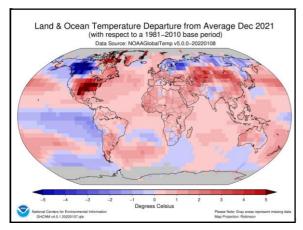
The Greenhouse Effect (cont.)

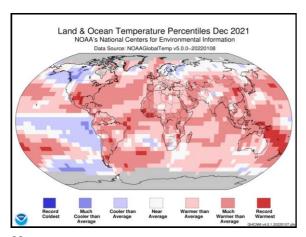
 Climate change is likely to have wide-ranging and mostly adverse impacts on human health, with significant loss of life.

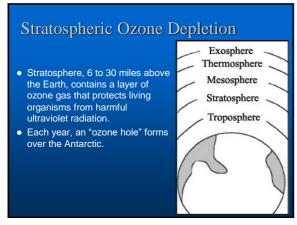
85

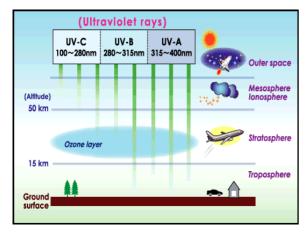

The Greenhouse Effect (cont.)

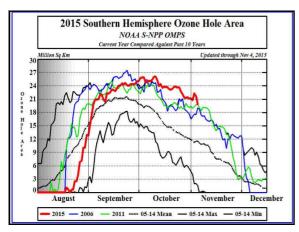

- State of the Climate in 2016 http://www.climate.gov
- Kyoto Protocol included greenhouse gas emission targets for industrialized countries for 2008–2012.
- Paris Agreement 2015 targets a 55% reduction of ghg

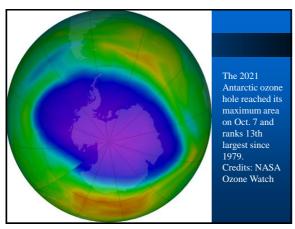

86

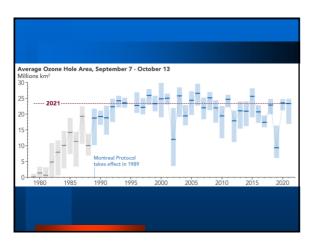




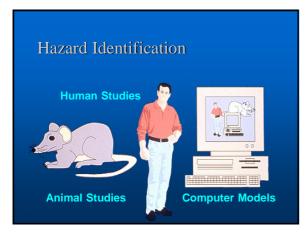






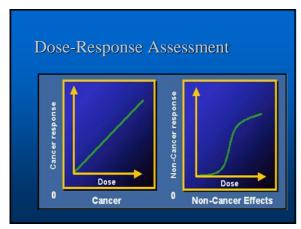

Stratospheric Ozone Depletion 1987 Montreal Protocol committed 170 nations to limiting the production of ozone-depleting substances. As a result, the hole is stabilizing and should be gone by the end of the century.

95

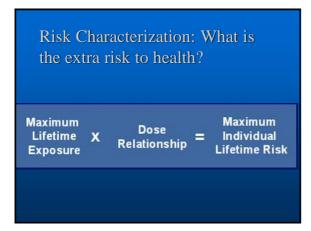

Risk Assessment

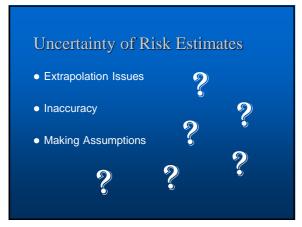
- Health risks are a measure of the chance that you will experience health problems.
- Risk management is the process the government uses to manage this health risk

100



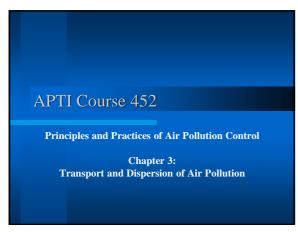
101




Exposure Assessment Exposure? Determine: Sources Amounts of toxins Number of people Pollution per person

103

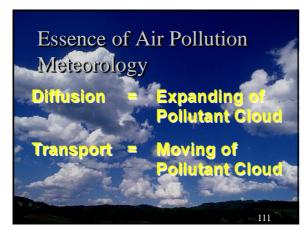
104

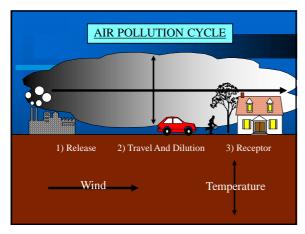


Chapter Summary

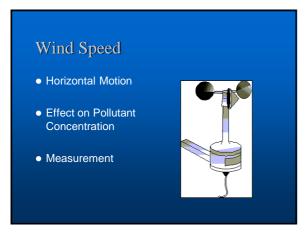
- Hazardous Effects of Air Pollutants on the Human Body Systems
- Criteria Pollutants
- Toxic Air Pollutants
- Environmental Effects of Air Pollution
- Risk Assessment

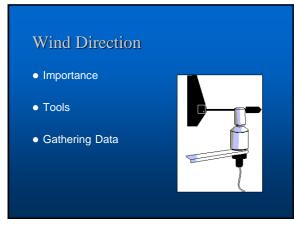
107


Review Questions

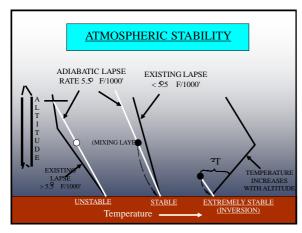


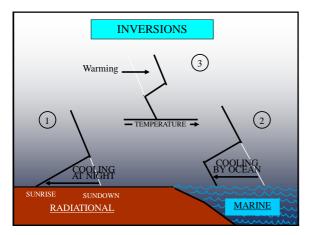
Chapter Overview

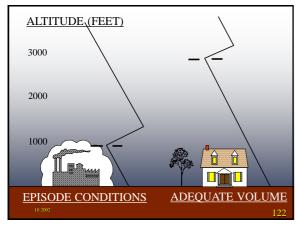

- Wind Speed and Direction
- Atmospheric Stability
- Topography
- New Sources

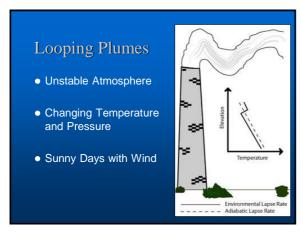

110

Atmospheric Stability

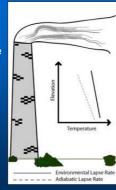

- Vertical Movement of Air
- Differential Heating
- Conduction vs. Convection
- Turbulence
 - Thermal
 - Mechanical


118


Atmospheric Stability (cont.)


- Adiabatic Lapse Rate
- Environmental Lapse Rate
- Plumes
- Plume Types

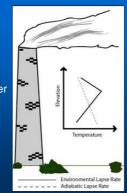
119



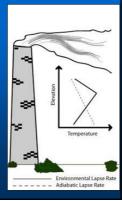
Fanning Plumes • Stable Conditions • Wind moving horizontally • Early Morning

124

Coning Plumes

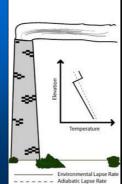

- Neutral or Slightly Unstable Conditions
- Large Billows
- Partly Cloudy Days

125


Lofting Plumes

- Stable Conditions
- Above the Inversion Layer
- Smokestack Height
- Effective Dispersion

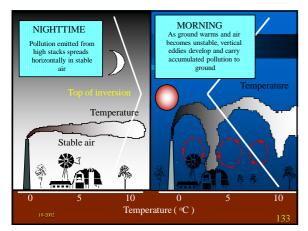
Fumigating Plumes

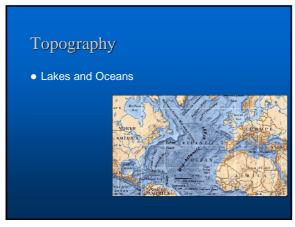

- Early Morning
- Below the Inversion Layer
- High Concentrations of Pollutants at the Surface

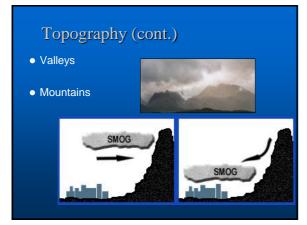
127

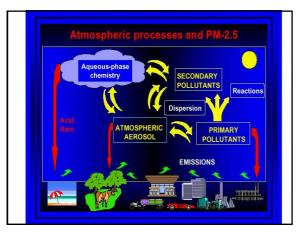
Trapping Plumes

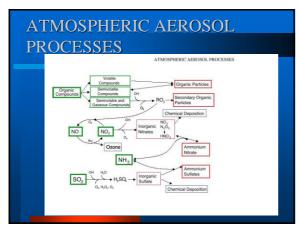
- Clear and Sunny Days
- Inversion layer above and below
- Most Favorable Type


128





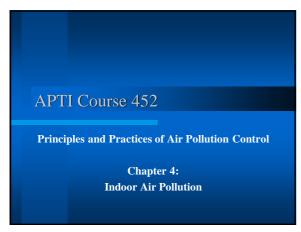




137

New Source Review (NSR)

- Prevention of Significant Deterioration (PSD) uses the appropriate dispersion model to evaluate whether the proposed source will exceed its part of the allowable air increment within the sites Air Quality Management Area.
- 40 CFR Part 51 Appendix W modeling



140

Modeling

- Dispersion Models use mathematical formulations to characterize the atmospheric processes that disperse a pollutant by a source
- Photochemical Models large-scale models that simulate the changes of pollutants concentrations using mathematical equations characterizing physical and chemical processes

Modeling continued	
 Receptor Models – mathematical and/or statistical procedures for identifying and quantifying the sources of pollutants at a receptor location 	
 SCRAM – Support Center for Regulatory Atmospheric Modeling www.epa.gov/scram/air-quality-dispersion- 	
modeling	
142	
Chapter Summary	
Wind Speed and Direction	
Atmospheric Stability	
Topography	
Dispersion Modeling	
143	
	-
REVIEW QUESTIONS	

Chapter Overview

- Sources and Effects of Indoor Air Pollution
- Sick Building Syndrome
- Controls of Indoor Air Pollution
- EPA's Approach and Progress

146

Levels of Indoor Pollutants

May be 25 times the outdoor level.

Many people spend 90% of their time indoors

148

Sources of **Indoor Air Pollution**

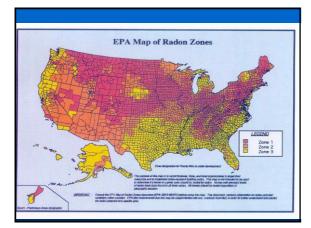
- Biological Contaminants
- Radon
- Environmental Tobacco Smoke
- Stoves, Heaters, Fireplaces and Chimneys
- Asbestos
- Pesticides
- Organic Chemicals
- Formaldehyde
- Lead
- Carbon Monoxide
- Nitrogen Oxide

149

Biological Contaminants

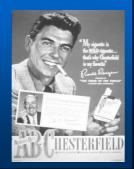
- Sources
 - Bacteria
 - Molds, mildew
 - Viruses
 - Animal dander

Biological Contaminants


- Health Effects
 - Asthma
 - Eye, nose and throat irritation
 - Shortness of breath
 - Dizziness, lethargy
 - Fever and humidifier fever
 - Digestive problems
 - Influenza and other infections
- Ways to Reduce Exposure
 - Clean, vent, use of filters

151

Radon


- Naturally forming radioactive gas produced when uranium decays.
- Found in soil and groundwater
- Health Effects Lung Cancer
- Ways to Reduce Exposure
 - Vents and fans

152

Environmental Tobacco Smoke

 A complex mixture of over 4,000 compounds, more than 40 of which are known to cause cancer in humans or animals

• Estimated there are 40,000 deaths each year in nonsmokers.

154

Stoves, Heaters, Fireplaces and Chimneys

- What is it?
- Health Effects
- Ways to Reduce Exposure

155

Asbestos

- A mineral fiber that has been commonly used in a variety of building construction materials, and brakes
- Can cause lung cancer, mesothelioma (a cancer of the chest and abdominal linings), and asbestos
- There is no danger unless fibers are released and inhaled into the lungs.

Pesticides Term includes insecticides and disinfectants 80 percent of most people's exposure to pesticides occurs indoors To reduce exposure, read the label and follow the directions Term includes insections DANGER POISON UNDERSTAND SIGNAL WORDS Severe Eye DANGER OF SIGNAL WORDS WARNING SEVERE EYE DANGER OF SIGNAL WORDS CAUTION SIGNAL WORDS SEVERE EYE DANGER OF SIGNAL WORDS SEVERE EYE DAN

158

Organic Chemicals

- Paints, glues, solvents, cleaners, fuels
- Health effects are varied
- Reduce exposure by following the label instructions.

Formaldehyde

- A colorless, pungent-smelling gas that can cause watery eyes, a burning sensation in the eyes and throat, nausea, and difficulty in breathing.
- Sources include building materials, smoking, household products, and the use of unvented, fuel-burning appliances, like gas stoves or kerosene space heaters and pressed wood products.

160

Formaldehyde

- Possible health effects include increase in asthma attacks, has also been shown to cause cancer in animals.
- Ways to reduce exposure include ventilation

161

Lead

- See previous slides
- Affects the central nervous system
- Sources include old paint, soil, some types of old water pipes

Carbon Monoxide	
See previous slides	-
To reduce exposure properly vent appliances	
	-
163	
103	
Nitrogen Oxides	
See previous slides	-
To reduce exposure properly vent appliances	
164	
104	
Sick Building Syndrome	-
A variety of unrelated symptoms or health	
 A variety of unrelated symptoms or health effects that are reported by at least twenty percent of a building's occupants. 	
Estimates suggest that building-related illnesses result in direct medical costs of over	
\$1 billion each year	

Sick Building Syndrome • Causes include poorly designed,

• Causes include poorly designed, maintained, or operated ventilation systems.

166

Controls of Indoor Air Pollution

- Source Control
- Ventilation
- Air Cleaners

167

EPA's Approach and Progress

- EPA Indoor Air Program
- Other Federal Agencies

Chapter Summary

- Sources and Effects of Indoor Air Pollution
- Sick Building Syndrome
- Controls of Indoor Air Pollution
- EPA's Approach and Progress

169

170

APTI Course 452 Principles and Practices of Air Pollution Control Chapter5: Control of Stationary Sources (Particulate Matter)

Chapter Summary

- Introduction to Stationary Sources
- Control Procedures
- Control Devices for Particulate Emissions

172

Introduction to Stationary Sources

- Process Operations Groupings
- Air Release Emissions Points

173

Process Operations Groupings

- Process Operations
- Atmospheric Releases
- Auxiliary Losses
- Waste Emissions

Air Release Emissions Points		
Industrial Process Operation Air Emission Points and Categories		
Process Operation	Fugitive Sources	
Reactors vents	Valves	
Distillation systems	Pump seals	
Vacuum systems	Flanges/connectors	
Combustion stacks	Compressors	
Blow molding	Open ended lines	
Spray drying and booths	Pressure relief devices	
Extrusion machines	Equipment cleaning/maintenance	
Surface Area Sources	Handling, Storage, Loading	
Pond evaporation	Storage tank breathing losses	
Cooling tower evaporation	Loading/unloading	
Wastewater treatment	Line venting	
Land disposal	Packaging and container loading	

Control Procedures

- Exhaust Stacks
- Plant Operations
- Control Technology

176

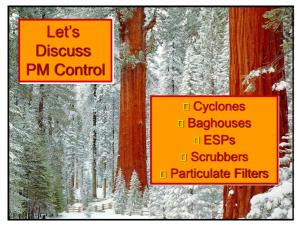
- Benefits
 - Reduce effectsCheap
- Drawbacks
 - Transfer pollution to another location

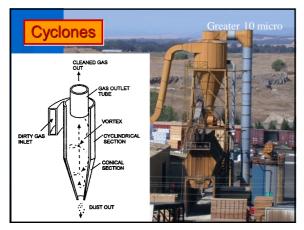
Control Technology

- Exhaust Gas Characteristics
- Process or Site Characteristics
- Use of Control Devices

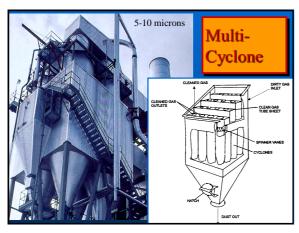
179

Exhaust Gas Characteristics


- Total Exhaust Flow Rate
- Exhaust Gas Temperature
- Required Control Efficiency
- Particle Size Distribution
- Particle Resistivity
- Composition of Emissions
- Corrosiveness of Exhaust Gas
- Moisture Content
- Stack Pressure
- Exhaust Gas Combustibility and Flammability


181

Process or Site Characteristics


- Reuse/Recycling of Collected Emissions
- Availability of Space
- Availability of Additional Electric Power
- Availability of Water
- Availability of Wastewater Treatment Facilities
- Frequency of Startup and Shutdowns
- Environmental Conditions
- Anticipated Changes in Control Regulations
- Anticipated Changes in Raw Materials
- Plant Type Stationary or Mobile

182

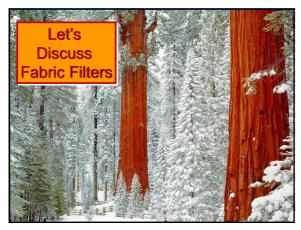
Cyclones: Collection Efficiency

Typical Efficiency

Single cyclone: 30-95% pm10Single cyclone: 0-70 pm% 2.5Multiple cyclone: 80-99%

- Determining Factors for Efficiency
 - Particle size and/or density
 - Inlet duct velocity
 - Cyclone body length and design

187

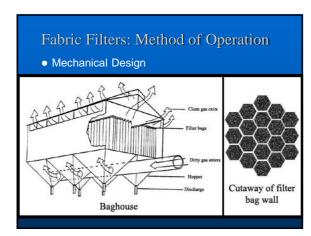

Cyclones: Advantages

- Low Capital Cost
- No Moving Parts
- Few Maintenance Requirements
- Low Operating Costs
- Relatively Low Pressure Drop
- Dry Collection and Disposal
- Relatively Small Space Requirements

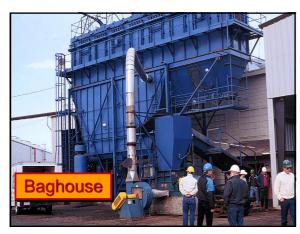
188

Cyclones: Disadvantages

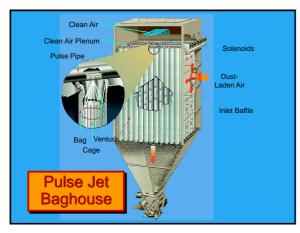
- Relatively Low PM Collection Efficiencies
- Unable to Handle Sticky or Tacky Materials
- High Efficiency Units May Experience High Pressure Drops



191

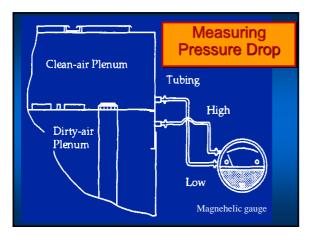

Fabric Filters

- Method of Operation
- Cleaning
- Collection Efficiency
- Benefits / Drawbacks



Fabric Filters: Cleaning

- Shaking
- Reverse-air
- Pulse-jet


197

203

Pulse Jet Baghouse Advantages

- Have high collection efficiency for respirable dust
- Can have high air-to-cloth ratio (6 to 10 ft/min)
- Have increased efficiency and minimal residual dust buildup due to aggressive cleaning action
- Can clean continuously
- Can use strong woven bags

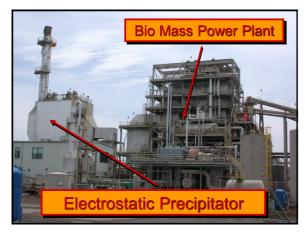
Pulse Jet Baghouse Disadvantages

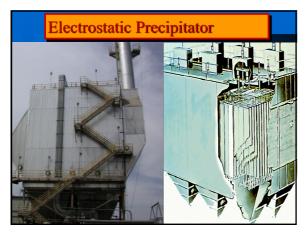
- May not be used readily in high temperatures unless special fabrics are used
- •
- Cannot be used if high moisture content or humidity levels are present in the exhaust gases

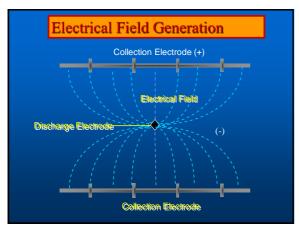
205

Fabric Filters: Collection Efficiency

- Typical Efficiency
 - 95-99.9% (old equipment)
 - 99-99.9% (new equipment)
- Determining Factors for Efficiency
 - Gas Velocity
 - Particle characteristics
 - Fabric characteristics
 - Cleaning mechanism, intensity, frequency


206


Fabric Filters: Benefits / Drawbacks


- Simplicity
- Sensitivity
- Installation
- Cleaning and Maintenance

212

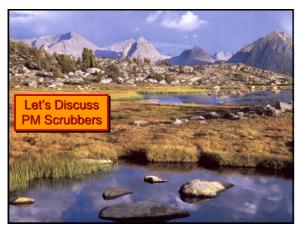
Electrostatic Precipitator

- General Description
 - -Two types
 - Dry type use mechanical action to clean plates
 - Wet type use water to prequench and to rinse plates

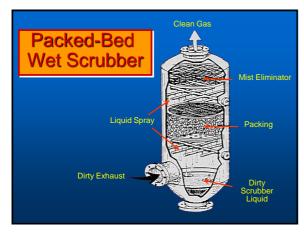
ESPs: Design Factors Affecting Performance

- Specific Collection Area
- Aspect Ratio
- Collection Plate Spacing
- Sectionalization
- Power Requirements/Spark Rate

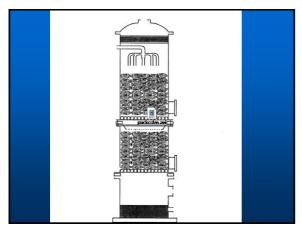
215

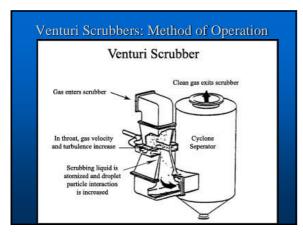

Electrostatic Precipitators: Collection Efficiency

- Typical Efficiency
 - 99% <10microns
- Determining Factors for Efficiency
 - ESP size and retention time
 - Electric field strength
 - process factors


Electrostatic Precipitators: / Drawbacks • Benefits

- Removal efficiency
- Drawbacks
 - Cost
 - Installation
 - Operating Range
 - Treatment and Maintenance


217

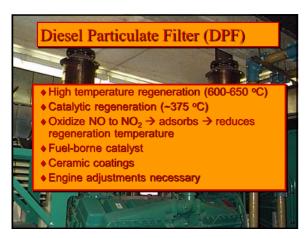

218

224

- Typical Efficiency
 - 70 to 99 % removal0.5 to 5 microns
- Determining Factors for Efficiency
 - Pressure drop and energy consumption

Venturi Scrubbers: Advantages

- Capable of Handling Flammable and Explosive Dusts
- Can Handle Mists in Process Exhausts
- Low Maintenance
- Simple in Design and Easy to Install
- Variable Collection Efficiency
- Provides Cooling for Hot Gases
- Neutralizes Corrosive Gases and Dusts


226

Venturi Scrubbers: Disadvantages

- Water Pollution
- Wet Waste Product
- High Corrosion Potential
- Requires Protection Against Freezing
- Final Exhaust Must Be Reheated
- Collected PM May be Contaminated
- Disposal of Waste Sludge is Very Expensive

227

230

Chapter Summary

- Introduction to Stationary Sources
- Control Procedures
- Control Devices for Particulate Emissions

Review Questions	
	-
	-