

History

- Assyrians and Babylonians used clay
- Egyptians used lime and gypsum
- Greeks used natural cement
- Romans used slaked lime, pozzolana (volcanic ash)
- Joseph Aspdin, Leeds UK, developed Portland Cement

Portland Cement

 A fine powder, gray or white in color, that consists of a mixture of hydraulic cement materials comprising primarily of calcium silicates, aluminates and aluminoferrites.

How is Cement Made?

- Limestone
- ■Clay
- Sand
- Iron-containing materials

Calciner Towers

 Dry pulverized material is preheated and partially calcined before entering the rotary kiln

Types of Cement Kilns

- Long Wet Kilns
- Semi-dry Kilns
- Long Dry Kilns
- Kilns with a Preheater
- Kilns with a Precalciner

Greenhouse Gas CO₂

 1997 Approximately 100 million tons of CO₂ emissions from cement kilns

Types of Calciner Towers

ILCTM: In-Line Calciner
 Single-string or double-string cyclone pre-heated kiln with precalciner built into the kiln riser duct. Combustion air for the prealciner is drawn through a separate tertiary air duct between the cooler and the calciner.

Types of Calciner Towers

- SLC-D:Separate-Line Calciner-Downdraft
- Single-string or doublestring cyclone preheater kiln with a combustion chamber/precalciner placed parallel to the riser duct.

Types of Calciner Towers

- SLC- Separate-Line Calciner
- Double-string or triplestring cyclone preheater kiln with a precalciner placed parallel to the kiln riser duct

Types of Calciner Towers

- SLC-ITM: Separate-Line Calciner with In-Line Calciner
- Double string cyclone preheater kiln with a precalciner placed both within the kiln riser duct and parallel with the kiln riser duct

Types of Calciner Towers

- SLC-D-NO_XTM: Separate-Line Calciner-Downdraft Low NO_X Type
- Single-string or double-string cyclone preheater kiln with a downdraft combustion chamber and an in-line calciner built into the kiln riser duct.

Other Classes of Cement

■Clays

- Common Limes
- Hydraulic Limes
- Natural Cements
- Pozzolana Cements

Characteristics of Clays

- Chiefly aluminum silicate
- Can be used alone or with other substances
- Formed by disintegration of minerals
- Requires no preliminary processing
- Do not harden in water

Characteristics of Common Limes

- Do not set under water
- Require processing
- Must be heated before water is added
- Produced from calcium carbonate, CaCO₃

Characteristics of Hydraulic Limes

 An hydraulic hydrated lime is the hydrated, dry cementitious product obtained by calcining a limestone containing silica and alumina to a temperature short of incipient fusion, so as to form sufficient free lime (CaO) to permit hydration.....

Natural Cements

- Hydraulic cementitious materials
- Each raw materials contains compounds of silicon, aluminum, and calcium
- Preparation includes crushing and grinding material into smaller size
- Main use is for concrete

Pozzolana Cements

- Originally produced by the Romans
- Hydrated lime and finely ground volcanic materials containing aluminum, silicon, sodium, and potassium
- Named for a town in Italy, Pozzolana
- Requires two raw material components: Calcinate limestone and finely ground Pozzolana

Raw Materials

■ Sand

Bauxites

Alumina-rich flint clays

Raw Materials for Lime

- Aragonite
- Limestone
- ■Marl
- ■Shale

Raw Materials for Iron

- Blast furnace flu dust
- ■Clay
- ■Iron ore
- ■Mill scale
- ■Shale

Raw Materials for Silica

- \blacksquare SiO₂
- Calcium silicate
- Clay
- Marl
- Sand
- Shale

Raw Materials for Alumina

 $\blacksquare Al_2O_3$

Aluminum ore refuse

■ Clay

■ Fly ash (also high in carbon)

Mercury content restricted

■ Shale

Raw Materials for Gypsum

 $\Box CaSO_4.2H_2O$

Anhydrite

Calcium sulfate

■Gypsum

Major Components of Portland Cement Clinker

Tricalcium silicate

- Dicalcium silicate
- Tricalcium aluminate
- Tetracalcium aluminoferrite

Factors to be Considered

- Composition
- Uniformity
- Physical Characteristics
- Manual page 200-9

Factors (Continued)

- Overburden
- Quantity
- Location, Topography, and Transportation Methods

Types of Portland Cement

- Type I normal, general purpose
- Type IA normal, air entraining
- Type II moderate sulfate resistant
- Type IIA moderate heat of hydration and moderate sulfate resisting and air entrained. Low alkaline

Types of Portland Cement

- Type III high early strength
- Type IIIA high early strength and air entraining
- Type IV low heat of hydration
- Type V high sulfate resistance

Focus

Processes and equipment

- Regulation requirements
- Inspection procedures

Four Step Process

- Acquisition of raw material
- Preparation of the raw materials for pyroprocessing
- Pyro-processing of the raw material to form
 Portland cement clinker
- Grinding of the clinker to Portland cement

Layout

Quarry

- Preliminary Grinding and Mixing
- Kilning and Clinkering
- Finish and Fine Grinding
- Storing, Packaging, and Shipping

Inspector's View

- Is the facility operating within it's PTO?
- Have all the emission points been identified?
- What is 40 CFR 266?
- Air Regulations HAP, PM, SO2 & NO_X emissions, CO2/GHG
- Are all possible mitigation measures being implemented?

Pyro-processing

- Dry Process
- Dry Process w/Preheater
- Precalciner
- Semi-dry Process

Kiln

- Chamber of combustion
- Flue for gases and vapors
- Conveyor
- Heat exchanger and dryer
- Calciner
- Mixer
- Transformer

Zones and Temperatures

Drying/Preheating	60-1,480 °F
Calcining	1,480-2,192°F
Upper-transition	2,192-2,552°F
Sintering	2,552-2,750°F
■ Cooling	
(lower transition)	2,750-2,350°F

Tire Derived Fuel One pound of tires has a heat value of 1.5

- pounds of sub-bituminous coal
- Average tire has 15000 BTU per pound compared to approx 10,000 per pound of coal

Advantages of Waste Fuels

- Utilizes the energy value of the waste as fuel which would otherwise be lost
- It contributes to the public good by keeping these recyclable materials from being buried in landfills, incinerated or injected into underground wells
- It reduces the need for fossil fuels
- It reduces stack emissions by replacing coal with cleaner burning waste fuels
- It reduces operating costs

Hazardous Wastes

Subject to RCRA and 40 CFR 63 Subpart EEE

Organic

Prove 99.99% DRE

Inorganic

Specific limits

USEPA HAP Metals

- Antimony
- Arsenic**
- Barium
- Beryllium**
- Cadmium**
- Chromium**

*Subpart EEE and LLL **Subpart EEE only Cobalt Lead** Mercury* Nickel Selenium

Emissions

Oxides of Nitrogen
Oxides of Sulfur
Carbon Monoxide

Emissions

- Incomplete combustion
- Flame configuration
- Raw materials
- Types of fuels

Mercury

Coal burning median mercury concentration in US coals 0.03-0.24 ppm by weight
 21 or 55 lb/MM ton clinker

Human health concerns

HCl and Dioxins

 Feed impurities and chlorinated solvent waste fuels
 Human health concerns

What Kind of Control?

Electrostatic Precipitators

- Older technology
- Baghouses
 - **Better for very fine PM**

Cement Kiln Dust (CKD)

- CKD is alkaline
- May contain organic contaminants

Legal Requirements

- States and Locals
 - Authority to construct
 - Permit to Operate
 - **NOx RACT, PSD, NNSR**
- **U.S. Environmental Protection Agency**
 - **•** Resources Conservation and Recovery Act
 - Maximum Achievable Control Technology
 - **New Source Performance Standard**

State/Local Level

- Authority to construct
- Permit to Operate
- Permit Conditions
- New Source Performance Standards
- MACT
- Title V

NOX

- 1993 US EPA stated cement kilns are a stationary source that emit more than 25 tpy NO_X, triggered NO_X RACT
- Recommended low NO_X burners to facilitate staged combustion
- Estimated 25% NO_X reduction
- NSPS limit June 2008 (NO_X & SO2)

Maximum Achievable Control Technology

- Portland Cement MACT
- Three year compliance schedule on controls of dioxins and particulates
- Dioxin testing required every 2.5 years
- Particulate testing every 5 years
- Retesting for dioxins within 90 days of a significant change in raw materials or fuels
- Written operations and maintenance plan for kiln and all APCD systems
- Encouraging of particulate matter CEMs
- HCl and mercury added later

40 CFR 63 Subpart LLL

- Original Final rule 6/14/99, remanded in 2000, Newer final in 2006. Major revisions in 2010.
- Reduced emissions of air toxics such as arsenic, cadmium, lead, benzene, toluene, dioxin and furans, hexane, and formaldehyde.
- Reduced emissions from toxics approx 31% (90 TPY)
- Reduce emissions of PM 5200 TPY
- Reduce hydrocarbons by 220 TPY

Subpart LLL(continued)

- New test methods for measuring emissions
- CEMs required for PM
 - **EPA later eliminated this requirement**
- Monitoring, record keeping, and reporting requirements.

Resource Conservation and Recovery Act

- Generation
- Transport
- Recycling
- Treatment
- Storage
- Disposal

Old RCRA Exemptions

■"Recycled"

Chemical wastes

Exemptions went away with RCRA BIF rules in 1991

40 CFR 63 Subpart EEE

- Hazardous Waste Combustors MACT
- Original Final Rule 1998
 - Revised about a dozen times 1999-2008
 - **Transition from RCRA**
 - **Some portions of RCRA continue to apply**
- PM, HCl, Cl₂, Dioxins/Furans, mercury, cadmium, lead, arsenic, beryllium, chromium, CO and THC.

Regulations

Will the cement kilns already burning hazardous wastes have to comply with the adopted regulations?

■ Yes!

Monitoring and Control Systems

- Maximum amount of hazardous waste fuel
- Max. amount of metals from both raw materials and fuels
- Max. amount of chlorine from raw materials and fuels
- Max. stack flow or production rate

How Often Do You Need to Monitor?

Metals

Chlorine

Carbon Monoxide

Total Hydrocarbons

Upsets

Partial Blockage of the Kiln

Fuel Interruptions and/or

Power Failures

Baghouse or ESP Breakdowns

US EPA Levels of Inspection

- Level 1 Unannounced, drive-by.
- Level 2 Serve to gather compliance data, identify violations.
- Level 3 Focuses on a specific problem.
- Level 4 Baseline data gathering.

Six Points of Inspection

- Capture
- Transport
- Air Mover
- Instrumentation
- Subsystem
- Control Device

Where would the emission points be?

- Baghouse stack
- Transfer points
- Material buildup
- Dust piles
- Housekeeping

Inspector Safety

- Proper Equipment
- First Aid Kit
- Safety Procedures of the Plant
- Hot surfaces
- Flow Chart
- Cell Phone (Emergency numbers)
- Noise

Hazards

Cement Kiln Dust

♦Heat

♦Caustic

Inhalation

