The National Air Compliance Training Program

Course 288 Petroleum Refining 2017

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

How do you eat an Elephant?

One bite at a time.

Early Uses of Petroluem

- Water Repellent and Caulking
- Grease and Lubricants
- Lamp Oil
- Medicines

The Oil Boom

1859 was to oil as 1849 was to gold. But what to do with all of the oil?

Early Refining

Top US Refineries

- 1. Port Arthur Refinery (Montiva), Port Arthur, TX, 600,250 Bbl/day
- 2. Baytown Refinery (ExxonMobil), Baytown, Texas, 584,000 Bbl/day
- 3. Garyville Refinery (Marathon), Garyville, LA, 522,000 bbl/day
- 4. Baton Rouge Refinery (ExxonMobil), Baton Rouge, LA, 503,000 Bbl/day
- 5. Hovensa LLC (Hovensa LLC), Kingshill, Virgin Islands, 500,000 Bbl/day
- 6. BP (BP), Texas City, TX, 460,000 Bbl/day
- 7. Lake Charles Refinery (Citgo), Lake Charles, LA, 427,800 Bbl/day\
- 8. BP (BP), Whiting, IN, 399,000 Bbl/day
- 9. ExxonMobil (Exxon Mobil), Beaumont, TX, 344,500 Bbl/day
- 10. Philadelphia Energy (Carlyle Group), Philadelphia, PA, 335,000 Bbl/day
- 11. WRB Refining, (WRB Refining) Wood River, IL, 333,000 Bbl/day
- 12. Chevron (Chevron USA Inc.), Pascagoula, MS, 330,000, Bbl/day

CompanyLocationCrude capa- (19, Mcd1Paraguana Refining CenterCardon/Judibana, Falcon, Venezuela940,0003GS Caltex Corp. Ulsan, South Korea960,0003GS Caltex Corp. (19, McdJammagar, India4Reliance Petroleum Itd. (19, McdJammagar, India5ExonMobil Refining & Supply Co. (10, Saudi Aramoo)Jammagar, India8ExonMobil Refining & Supply Co. (10, C, Saudi Aramoo)Jammagar, India9Saudi Arabia Oli Co. (Saudi Aramoo)Baytown, Tex.10Formose Petrochemical Co. (10, C, Saudi Aramoo)Saudi Arabia11ExonMobil Refining & Supply Co. (12, Gaudi Aramoo)Baytown, Tex.12Hovensa LLC (12, Gaudi Aramoo)Saudi Arabia13Marathon Petroleum Co. (12) Petroleum Corp. (12) Petroleum Corp. (12) Saudi Arabia Oli Co. (Saudi Aramoo) (2) Saudi ArabiaCosobarels per day14Kuwait Nathonal Refining Co., Tuba (Yess): (2) Socobarels per daySocoobarels per day15Shell Reference MobilYessocobarels per day16BP PLC (2) Saudi Arabia Oli Co. (Saudi Aramoo) (2) Saudi ArabiaArdmore: (2) Socoobarels per day17Cilgo P	WORLD	'S LARGEST REFINERIES		Table 3	
1 Paraguana Refining Center Cardon/Judibana, Falcon, Venezuela 940,000 3 GS Caltex Corp. Yeau, South Korea 760,000 3 GS Caltex Corp. Yeau, South Korea 760,000 4 Reliance Petroleum Ltd. Jarnagar, India 760,000 5 ExconMobil Refining & Supply Co. Jarnagar, India 560,000 9 Saudi Arabiao IICo. (Saudi Aramco) Darsan, South Korea 560,000 10 Formosa Petrochemical Co. Baytown, Tex. 500,000 11 ExconMobil Refining & Supply Co. Baytown, Tex. 500,000 12 Hovensa LtC Baytown, Tex. 500,000 13 Maathon Petroleum Co. Baytown, Tex. 500,000 14 Kuwait National Petroleum Co. Baytown, Tex. 440,000 15 Shell Bastern Petroleum Corp. Baytown, Singapore 462,000 16 Brei Bastern Petroleum Corp. Baytown, Singapore 462,000 17 Cigo Petroleum Corp. Baytow, Tex. 440,000 20 Saudi Arabian Oli Co. (Saudi Aramco) Casudi Arabia 400,000 21 Saudi		Company	Location	Crude capa- city, b/cd	
nocoPhillips Co., Ponca City: 198,400 barrels per day tolly Refining and Marketing Co., Tulsa (East): 70,300 barrels per day tolly Refining and Marketing Co., Tulsa (West): 85,000 barrels per day alero Refining Co. Oklahoma, Ardmore: 85,000 barrels per day tymnewood Refining Co., Wynnewood: 70,000 barrels per day	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	Paraguana Refining Center SK Innovation GS Caltex Corp. Reliance Petroleum Ltd. ExoomMobil Refining & Supply Co. Reliance Industries Ltd. S-Oil Corp. ExoomMobil Refining & Supply Co. Saudi Arabian Oil Co. (Saudi Aramco) Formosa Petrochemical Co. Hovensa LtC Marathon Petroleum Co. Shell Eastern Petroleum Co. Shell Eastern Petroleum Cte.) Ltd. BP PLC Citgo Petroleum Corp. Shell Nederland Raffinadenij BV Sinopec Saudi Arabian Oil Co. (Saudi Aramco) Saudi Arabian Oil Co. (Saudi Aramco) Saudi Aramco-Mobil	Cardon/Judibana, Falcon, Venezuela Ulsan, South Korea Jamnagar, India Jurong/Pulau Ayer Chawan, Singapore Jamnagar, India Onsan, South Korea Baytown, Tex. Ras Tanura, Saudi Arabia Mailiao, Taiwan Baton Rouge, La. St. Croix, Virgin Islands Garyville, La. Mina Al-Ahmadi, Kuwait Pulau Bukom, Singapore Texas City, Tex. Lake Charles, La. Pernis, Netherlands Zhenhai, China Rabigh, Saudi Arabia Yanbu, Saudi Arabia	940,000 840,000 660,000 605,000 560,000 560,000 560,000 560,000 550,000 502,500 502,500 500,000 466,000 440,000 440,000 400,000	
olly Refining and Marketing Co., Tulsa (East): 70,300 barrels per day olly Refining and Marketing Co., Tulsa (West): 85,000 barrels per day lero Refining Co. Oklahoma, Ardmore: 85,000 barrels per day ymnewood Refining Co., Wynnewood: 70,000 barrels per day	ocoPhillips	s Co., Ponca City: 198,400 barrels per day	63	STERS!	A CONTRACTOR OF A CONTRACTOR O
olly Refining and Marketing Co., Tulsa (West): 85,000 barrels per day alero Refining Co. Oklahoma, Ardmore: 85,000 barrels per day iynnewood Refining Co., Wynnewood: 70,000 barrels per day	olly Refinin	g and Marketing Co., Tulsa (East):	70,300 barrels per day	280	
alero Refining Co. Oklahoma, Ardmore: 85,000 barrels per day Vynnewood Refining Co., Wynnewood: 70,000 barrels per day	olly Refinin	g and Marketing Co., Tulsa (West):	85,000 barrels per day		
iynnewood Refining Co., Wynnewood: 70,000 barrels per day	alero Refini	ing Co. Oklahoma, Ardmore: 85,000	arrels per day		
	Vynnewood	Refining Co., Wynnewood: 70,000 bar	rels per day	- Jack	
				10	

What Refineries Do

- They make useful products like:
 - gasoline
 - diesel fuel
 - jet fuel (JP-4, JP-5 and A-1)
 - heating oil
 - feed stock for petro-chemicals
- From Petroleum Crude

What Refineries Do

- They also make waste products:
 - air emissions
 - hazardous waste
 - waste water

Sources of Emissions

- **NOx Combustion Sources**
 - Fired Heaters (70%)
 - Fluid Catalytic Cracker (10-15%)
- **SOx Fuel Containing Sulfur**
- **CO** Incomplete Combustion
- VOC Fugitive Emissions
- Miscellaneous Sources (50%)

Summary of Regulations

- MACT
- NSPS
- Title V
- Fugitives
- Visible Emissions
- Fence line Monitoring
- Review of Refinery NSPS/NESHAP/MACT
 Standards Handout

High Priority Sources

- Fired Heaters
- Flares
- Catalytic Cracking
- Sulfur Recovery
- Fugitive Emissions
- Storage Tanks
- Wastewater Treatment
- Cooling Towers
- Vacuum Systems

Crude Oil Terms

- Heavy-Light Crude
- Sweet-Sour Crude
- API Gravity

Petroleum Chemistry

- Nomenclature
- **Physical Properties**
- Structure

Nomenclature

- $C1 = Methane (C_1H_4)$
- $C2 = Ethane (C_2H_6)$
- $C3 = Propane (C_3H_8)$
- $C4 = Butane (C_4H_{10})$
- $C5 = Pentane (C_5H_{12})$
- $C6 = Hexane (C_6H_{12})$
- $C8 = Octane (C_8H_{18})$ Octane Rating
- C16 = Cetane ($C_{16}H_{34}$)- Cetane Rating

Physical Properties

- Boiling point
- Structure
- Reactivity
 - Exothermic
 - Endothermic

Physical Properties

NAME	FORMULA	BOILING
		POINT
Methane	CH ₄	-162
Ethane	C_2H_6	-88.5
Propane	C_3H_8	-42
n-Butane	C_4H_{10}	0

Structure

- Paraffin (straight chain saturated)
 - Normal c-c-c-c
 - Branched (iso)
- Napthenes (ring or cyclo)
- Olefins (double bond)
 - unsaturated C= C-C-C
- Aromatics (cyclo-resonating bonds)

	ANS CRUDE BLEND REPO	RT FOR WEEK ENDING	VOV 20, 1987		
		CRUDE PROPERT	IES		
	Assay Gravity				27.1
	Nitrogen, ppm				1.16
	Concarbon, wt %				4.79
	Vanadium, ppm				12 26
	CRUDE BLEND DATA				
	Defined Components Ar	alysis			A0T#
	CZ				0.04
	C3				0.33
	nC4				0.44
Accou	105				0.81
ASSAV	C6+				1.14 95.71
	Total ,				100.00
	TEP Distillation	API	Sulfur	Diff	Cum
		UTAV	WCS	VOL 3	AOT #
	C4- 150 F	124.0	0.00	2.4	2.4
	200 F	59.6	0.00	2.4	8.2
	250 F 300 F	54.3	0.00	3.1	11.3
	350 F	47.1	0.00	3.7	18.5
	400 F 450 F	43.5	0.01	3.9	22.5
	500 F	34.0	0.30	5.2	32.5
	550 F 600 F	31.7	0.47	4.7	37.2
	650 F	27.0	0.85	5.5	48.3
	700 F 750 F	25.4	0.99	4.1	52.4
	800 7	23.8 22.5	1.09	4.1	60.9
	850 F	20.9	1.34	4.3	65.1
	950 F	19.5	1.49	4.0	73.3
	1000 F	16.0	1.80	4.0	77.3
	1050 F	13.6	1.89	3.9	81.2 84.8
	1100+ =	11.4	1.97	16.2	100.0

Quick Review 1

- Primary Sources of emissions
 - Combustion
 - Fugitive
 - Process particulates
 - **Regulations & Requirements**
 - NSPS, Part 61 & 63 NESHAPS, MACT, general SIP
 - Plus NSR/PSD permits, Title V, NSR consent decree
 - Crude Petroleum classifications
 - Sweet/sour
 - Light/heavy
 - Chemistry
 - Nomenclature
 - Physical properties
 - Structure
 - Octane
 - Expansion

Process Units by Refinery Type

Simple

-Crude Distillation -Hydrotreating of Middle Distillation -Catalytic Reforming of Naptha

Complex-Simple Plus -Vacuum Distillation -Catalytic Cracking -Alkylation Plant -Gas Processing

Very Complex -Olefin Unit -Complex Plus -Residue Reduction (Coker)

Very Complex Refinery

Complexity and Yields

Fuel Type	<u>. % Yield .</u>				
	Simple	Complex	Very Complex		
Gasoline	30	50	65		
Jet Fuel	10	19	20		
Distillate Fuel	20	17	25		
Residual Fuel	35	20	0		
Total	95	106	110		
Gain	-5	6	10		

EQUIPMENT COMBUSTION

Equipment Used in the Refining Process

- Fired Heaters
- Heat Exchangers
- Flares
- Cooling Towers
- Vacuum Jets
- Storage Tanks
- Pumps, Valves and Compressors

Fired Heaters

PURPOSE: To transfer heat from the combustion of fuels to water, oils, gases, or other fluids

Two Types of Fired Heaters

- Boilers Designed for steam generation
- Process Heaters/Furnaces Designed to heat liquid,
 oils and gases other than water

Types of Fired Heaters

- Natural Draft Heater
- Forced Draft Heater
- Induced Draft Heater
- Balanced Draft Heater

Close Up of Air Registers on Burner

Flames inside of a Firebox

Up-Fired Burners with Pre-Heated Air

Pollutant Control Requirements

NOx

- Flue Gas Recirculation (FGR)
- Low NOx Burners
- Selective Catalytic Reduction (SCR)
- Selective Non-Catalytic Reduction
- SOX
 - Limiting the amount of sulfur in the fuel gas
 - Post Combustion SO2 Scrubbers

Flue Gas Recirculation (FGR)

Selective Catalytic Reduction (SCR)

NOx control thru ammonia (NH₃) injection $4NO + 4NH_3 + O_2 \rightarrow 4N_2 + 6H_2O$ $2NO_2 + 4NH_3 + O_2 \rightarrow 3N_2 + 6H_2O$ 65-90% control Catalyst **Problems** NH₃ **Expensive High maintenance** O→ H₂0 $O \rightarrow N_2$ Ammonia "slip" Flue O→ H₂0 O-> NO, $O \rightarrow N_2$ **Catalyst replacement** O→ H₂0 & disposal

Selective Catalytic NO_x Reduction (SCR)

Ammonia Injection System for SCR

Selective Non-Catalytic Reduction

NOx control through ammonia or urea injection No catalyst necessary Temperature range 1400 °F – 2000 °F Injected upstream of convection section 30% - 50% control under normal conditions

Problems: Changing flue temperatures with changing load Formation of ammonium salts Ammonia slip

Inspection of SNCR

- Ammonia injection rate
- Operating temp 1400-1900 deg F
- May be required to test stack for ammonia slip.
- Contrasted to SCR that will often have CEMs for SCR temp should be 550-750 deg F

Waste Gas Burning

Soot Blowing

Blowing Dust From Boiler Tubes Using Steam Or Air

Fired Heaters

INSPECTION POINTS:

- Fuel (BTUs, sulfur)
- Control Equipment check
- **Permit conditions**
- Visible Emissions
- Flame observation

Regulations

- NSPS
- Boiler MACT
- Visible Emissions
- Local Regulations
- **Permit Conditions**

Heat Exchangers

Purpose: An energy conservation device used to transfer heat from a relatively hot fluid stream to a relatively cool fluid stream.

Relief System - Knockout Drum

Steam System for Flare Smokeless Operation

Water Seal Level for Flare

Continuous Overflow from the Water Seal

Video Monitor on Flare

Flares

- **REGULATIONS:**
 - NPSP
 - 40 CFR 60.18
 - Subpart QQQ Section 60.692-5 (c)
 - Subpart Kb, Section 60.113(b)
 - Subpart GGG, Section 60.592 (a)
 - Nuisance and odor issues
 - More tomorow

Flares Continued

- REGULATIONS:
- Visible Emission
 Evaluation (VEE)
- Odors
- SOx

FI	ar	es

- **INSPECTION POINTS:**
 - Visible Emission Evaluation (VEE)
 - Pilot Light
 - Odors
 - Gas Compressor if applicable
 - Water Seal
 - Flow Rates
 - Odors/Ground level SO2

EQUIPMENT (FUGITIVE VOC)

Coolers

Purpose: Use air to cool or condense process streams

Heat Exchangers Used in Conjunction with Air Coolers

Why Do They Leak

- Corrosion (pitting)
- Erosion (thinning of tubes)

"U-tube heat exchanger". Licensed under CC BY-SA 3.0 via Commons https://commons.wikimedia.org/wiki/File:Utube_heat_exchanger.PNG#/media/File:U-tube_heat_exchanger.PNG

Fan on Cooling Tower

Hydrocarbon Detector on a Riser Vent

Cooling Towers

- **REGULATIONS:**
 - Fugitive Emissions
 - No hexavalent chrome additives (corrosion inhibitor)
 - Odors

Cooling Towers

- Inspection Points:
 - Fugitive VOC's
 - Hexavalent chrome
 - Permit conditions
 - Odors

Steam Jet Ejectors

- PURPOSE: To remove gases from the vacuum flasher to create the vacuum
- MECHANISM: Uses a nozzle to increase the velocity and momentum of the steam. The high velocity and momentum draw a vacuum in the area beside the nozzle.

Steam Ejectors on a Vacuum Distillation Unit - First Stage

Steam Ejectors on a Vacuum Distillation Unit - Second Stage

Steam Ejector System on a Vacuum Distillation Unit

Steam Jet Ejectors

- Inspection Points:
 - Where do the noncondensables go?
 - Permit conditions
 - Covered condensate accumulator vessel (hot well)

Storage Tanks - Types

- Conservation tanks
- Pressure tanks
- Fixed roof tanks
- Internal floating roof tanks
- External floating roof tanks

- Tanks designed to hold vapors
- Have internal flexible diaphragms, lifter roofs, or blankets
- Often found in vapor recovery systems

Pressure Tanks

- A special type of fixed roof tank that are designed to operate above atmospheric pressure
- Commonly used to store liquefied petroleum gases (LPG)

Fixed Roof Tanks

- Cylindrically shaped vessels made of steel that are welded or riveted together and covered by a stationary roof
- The roof is generally conical in shape thus these tanks are also known as cone roof tanks

Fixed Roof Tanks

- VOC emissions (breathing losses and diurnal losses) are controlled by:
 - Vapor Recovery
 - Gas Blanketing (Test Warning)

Floating Roof Tanks

- Tanks designed to have roofs that float on the liquid surface to eliminate the formation of a vapor space
- Types of floating roof tanks
 - Internal
 - External

Primary Seals

Metallic Shoe Page 302-16

Resilient toriod Page 302-17

Inspection Points

- Primary and Secondary Seals
 - Sample Hatch
- P/V Valce
- Level Gauge
- Water Draw
- Roof Drain/Emergency Roof Drain
- **Temperature Gauges**

Checking the Secondary Seal on a Storage Tank

Sampling Hatch on Storage Tank

Sampling Well Inside of a Floating Roof Storage Tank

Leg of a Floating Roof Storage Tank - position of leg when the tank is in service

Inside of a Floating Roof Storage Tank

VOC Emission Control on Floating Roof Tank

Other Equipment

- Pumps, valves, compressors Leaks
- Reciprocating internal combustion engines
- Gas turbines
- A big emitter we'll cover later Fluid Catalytic Cracking Unit (FCCU)

Quick Review 2

- Equipment & associated emissions
 - Fired heaters combustion
 - Heat exchangers fugitives due to leaks
 - Flares combustion, fugitives, odors
 - Cooling towers fugitives, odors
 - Vacuum jets fugitives
 - Storage tanks fugitives
 - Pumps, valves, compressors fugitives
 - Internal combustion engines combustion
 - Gas turbines combustion
 - Don't forget about the FCCU

